Перевод: со всех языков на английский

с английского на все языки

not infringed patent

  • 1 ненарушенный патент

    Русско-английский словарь по патентам и товарным знакам > ненарушенный патент

  • 2 ненарушенный патент

    Универсальный русско-английский словарь > ненарушенный патент

  • 3 Whitney, Eli

    [br]
    b. 8 December 1765 Westborough, Massachusetts, USA
    d. 8 January 1825 New Haven, Connecticut, USA
    [br]
    American inventor of the cotton gin and manufacturer of firearms.
    [br]
    The son of a prosperous farmer, Eli Whitney as a teenager showed more interest in mechanics than school work. At the age of 15 he began an enterprise business manufacturing nails in his father's workshop, even having to hire help to fulfil his orders. He later determined to acquire a university education and, his father having declined to provide funds, he taught at local schools to obtain the means to attend Leicester Academy, Massachusetts, in preparation for his entry to Yale in 1789. He graduated in 1792 and then decided to study law. He accepted a position in Georgia as a tutor that would have given him time for study; this post did not materialize, but on his journey south he met General Nathanael Greene's widow and the manager of her plantations, Phineas Miller (1764–1803). A feature of agriculture in the southern states was that the land was unsuitable for long-staple cotton but could yield large crops of green-seed cotton. Green-seed cotton was difficult to separate from its seed, and when Whitney learned of the problem in 1793 he quickly devised a machine known as the cotton gin, which provided an effective solution. He formed a partnership with Miller to manufacture the gin and in 1794 obtained a patent. This invention made possible the extraordinary growth of the cotton industry in the United States, but the patent was widely infringed and it was not until 1807, after amendment of the patent laws, that Whitney was able to obtain a favourable decision in the courts and some financial return.
    In 1798 Whitney was in financial difficulties following the failure of the initial legal action against infringement of the cotton gin patent, but in that year he obtained a government contract to supply 10,000 muskets within two years with generous advance payments. He built a factory at New Haven, Connecticut, and proposed to use a new method of manufacture, perhaps the first application of the system of interchangeable parts. He failed to supply the firearms in the specified time, and in fact the first 500 guns were not delivered until 1801 and the full contract was not completed until 1809.
    In 1812 Whitney made application for a renewal of his cotton gin patent, but this was refused. In the same year, however, he obtained a second contract from the Government for 15,000 firearms and a similar one from New York State which ensured the success of his business.
    [br]
    Further Reading
    J.Mirsky and A.Nevins, 1952, The World of Eli Whitney, New York (a good biography). P.J.Federico, 1960, "Records of Eli Whitney's cotton gin patent", Technology and Culture 1: 168–76 (for details of the cotton gin patent).
    R.S.Woodbury, 1960, The legend of Eli Whitney and interchangeable parts', Technology and Culture 1:235–53 (challenges the traditional view of Eli Whitney as the sole originator of the "American" system of manufacture).
    See also Technology and Culture 14(1973):592–8; 18(1977):146–8; 19(1978):609–11.
    RTS

    Biographical history of technology > Whitney, Eli

  • 4 Arnold, Aza

    SUBJECT AREA: Textiles
    [br]
    b. 4 October 1788 Smithfield, Pawtucket, Rhode Island, USA
    d. 1865 Washington, DC, USA
    [br]
    American textile machinist who applied the differential motion to roving frames, solving the problem of winding on the delicate cotton rovings.
    [br]
    He was the son of Benjamin and Isabel Arnold, but his mother died when he was 2 years old and after his father's second marriage he was largely left to look after himself. After attending the village school he learnt the trade of a carpenter, and following this he became a machinist. He entered the employment of Samuel Slater, but left after a few years to engage in the unsuccessful manufacture of woollen blankets. He became involved in an engineering shop, where he devised a machine for taking wool off a carding machine and making it into endless slivers or rovings for spinning. He then became associated with a cotton-spinning mill, which led to his most important invention. The carded cotton sliver had to be reduced in thickness before it could be spun on the final machines such as the mule or the waterframe. The roving, as the mass of cotton fibres was called at this stage, was thin and very delicate because it could not be twisted to give strength, as this would not allow it to be drawn out again during the next stage. In order to wind the roving on to bobbins, the speed of the bobbin had to be just right but the diameter of the bobbin increased as it was filled. Obtaining the correct reduction in speed as the circumference increased was partially solved by the use of double-coned pulleys, but the driving belt was liable to slip owing to the power that had to be transmitted.
    The final solution to the problem came with the introduction of the differential drive with bevel gears or a sun-and-planet motion. Arnold had invented this compound motion in 1818 but did not think of applying it to the roving frame until 1820. It combined the direct-gearing drive from the main shaft of the machine with that from the cone-drum drive so that the latter only provided the difference between flyer and bobbin speeds, which meant that most of the transmission power was taken away from the belt. The patent for this invention was issued to Arnold on 23 January 1823 and was soon copied in Britain by Henry Houldsworth, although J.Green of Mansfield may have originated it independendy in the same year. Arnold's patent was widely infringed in America and he sued the Proprietors of the Locks and Canals, machine makers for the Lowell manufacturers, for $30,000, eventually receiving $3,500 compensation. Arnold had his own machine shop but he gave it up in 1838 and moved the Philadelphia, where he operated the Mulhausen Print Works. Around 1850 he went to Washington, DC, and became a patent attorney, remaining as such until his death. On 24 June 1856 he was granted patent for a self-setting and self-raking saw for sawing machines.
    [br]
    Bibliography
    28 June 1856, US patent no. 15,163 (self-setting and self-raking saw for sawing machines).
    Further Reading
    Dictionary of American Biography, Vol. 1.
    W.English, 1969, The Textile Industry, London (a description of the principles of the differential gear applied to the roving frame).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution. The Diffusion of Textile Technologies Between Britain and America, 1790–1830, Oxford (a discussion of the introduction and spread of Arnold's gear).
    RLH

    Biographical history of technology > Arnold, Aza

  • 5 Howe, Elias

    [br]
    b. 9 July 1819 Spencer, Massachusetts, USA
    d. 3 October 1867 Bridgeport, Connecticut, USA
    [br]
    American inventor of one of the earliest successful sewing machines.
    [br]
    Son of Elias Howe, a farmer, he acquired his mechanical knowledge in his father's mill. He left school at 12 years of age and was apprenticed for two years in a machine shop in Lowell, Massachusetts, and later to an instrument maker, Ari Davis in Boston, Massachusetts, where his master's services were much in demand by Harvard University. Fired by a desire to invent a sewing machine, he utilized the experience gained in Lowell to devise a shuttle carrying a lower thread and a needle carrying an upper thread to make lock-stitch in straight lines. His attempts were so rewarding that he left his job and was sustained first by his father and then by a partner. By 1845 he had built a machine that worked at 250 stitches per minute, and the following year he patented an improved machine. The invention of the sewing machine had an enormous impact on the textile industry, stimulating demand for cloth because making up garments became so much quicker. The sewing machine was one of the first mass-produced consumer durables and was essentially an American invention. William Thomas, a London manufacturer of shoes, umbrellas and corsets, secured the British rights and persuaded Howe to come to England to apply it to the making of shoes. This Howe did, but he quarrelled with Thomas after less than one year. He returned to America to face with his partner, G.W.Bliss, a bigger fight over his patent (see I.M. Singer), which was being widely infringed. Not until 1854 was the case settled in his favour. This litigation threatened the very existence of the new industry, but the Great Sewing Machine Combination, the first important patent-pooling arrangement in American history, changed all this. For a fee of $5 on every domestically-sold machine and $1 on every exported one, Howe contributed to the pool his patent of 1846 for a grooved eye-pointed needle used in conjunction with a lock-stitch-forming shuttle. Howe's patent was renewed in 1861; he organized and equipped a regiment during the Civil War with the royalties. When the war ended he founded the Howe Machine Company of Bridgeport, Connecticut.
    [br]
    Further Reading
    Obituary, 1867, Engineer 24.
    Obituary, 1867, Practical Magazine 5.
    F.G.Harrison, 1892–3, Biographical Sketches of Pre-eminent Americans (provides a good account of Howe's life and achievements).
    N.Salmon, 1863, History of the Sewing Machine from the Year 1750, with a biography of Elias Howe, London (tells the history of sewing machines).
    F.B.Jewell, 1975, Veteran Sewing Machines, A Collector's Guide, Newton Abbot (a more modern account of the history of sewing machines).
    C.Singer (ed.), 1958, A History of Technology, Vol. V, Oxford: Clarendon Press (covers the mechanical developments).
    D.A.Hounshell, 1984, From the American System to Mass Production 1800–1932. The
    Development of Manufacturing Technology in the United States, Baltimore (examines the role of the American sewing machine companies in the development of mass-production techniques).
    RLH

    Biographical history of technology > Howe, Elias

  • 6 Neilson, James Beaumont

    SUBJECT AREA: Metallurgy
    [br]
    b. 22 June 1792 Shettleston, near Glasgow, Scotland
    d. 18 January 1865 Queenshill, Kirkcudbright-shire, Scotland
    [br]
    Scottish inventor of hot blast in ironmaking.
    [br]
    After leaving school before the age of 14 Neilson followed his father in tending colliery-steam engines. He continued in this line while apprenticed to his elder brother and afterwards rose to engine-wright at Irvine colliery. That failed and Neilson obtained work as Foreman at the first gasworks to be set up in Glasgow. After five years he became Manager and Engineer to the works, remaining there for thirty years. He introduced a number of improvements into gas manufacture, such as the use of clay retorts, iron sulphate as a purifier and the swallow-tail burner. He had meanwhile benefited from studying physics and chemistry at the Andersonian University in Glasgow.
    Neilson is best known for introducing hot blast into ironmaking. At that time, ironmasters believed that cold blast produced the best results, since furnaces seemed to make more and better iron in the winter than the summer. Neilson found that by leading the air blast through an iron chamber heated by a coal fire beneath it, much less fuel was needed to convert the iron ore to iron. He secured a patent in 1828 and managed to persuade Clyde Ironworks in Glasgow to try out the device. The results were immediately favourable, and the use of hot blast spread rapidly throughout the country and abroad. The equipment was improved, raising the blast temperature to around 300°C (572°F), reducing the amount of coal, which was converted into coke, required to produce a tonne of iron from 10 tonnes to about 3. Neilson entered into a partnership with Charles Macintosh and others to patent and promote the process. Successive, and successful, lawsuits against those who infringed the patent demonstrates the general eagerness to adopt hot blast. Beneficial though it was, the process did not become really satisfactory until the introduction of hot-blast stoves by E.A. Cowper in 1857.
    [br]
    Principal Honours and Distinctions
    FRS 1846.
    Further Reading
    S.Smiles, Industrial Biography, Ch. 9 (offers the most detailed account of Neilson's life). Proc. Instn. Civ. Engrs., vol. 30, p. 451.
    J.Percy, 1851, Metallurgy: Iron and Steel (provides a detailed history of hot blast).
    W.K.V.Gale, 1969, Iron and Steel, London: Longmans (provides brief details).
    LRD

    Biographical history of technology > Neilson, James Beaumont

См. также в других словарях:

  • Patent infringement — Patent law (patents for inventions) …   Wikipedia

  • patent infringement — Under the Patents Act 1977, where the patented invention is a product, it is infringed if the infringer, without the patentee s permission, makes, disposes of, offers to dispose of, uses or commercialises products embodying the invention in the… …   Law dictionary

  • Patent infringement under United States law — In the United States, a patent provides its proprietor with the right to exclude others from utilizing the invention claimed in that patent. Should a person utilize that invention, without the permission of the patent proprietor, they may… …   Wikipedia

  • Patent — A patent is a set of exclusive rights granted by a state to an inventor or his assignee for a fixed period of time in exchange for a disclosure of an invention.The procedure for granting patents, the requirements placed on the patentee and the… …   Wikipedia

  • Claim (patent) — Patent claims are the part of a patent or patent application that defines the scope of protection granted by the patent. The claims define, in technical terms, the extent of the protection conferred by a patent, or the protection sought in a… …   Wikipedia

  • Patent Reform Act of 2005 — The Patent Reform Act of 2005 (USBill|109|H.R.|2795) was United States patent legislation proposed in the 109th United States Congress. Texas Republican Congressman Lamar S. Smith introduced the Act on 8 June 2005. [ Dennis Crouch,… …   Wikipedia

  • Patent infringement under United Kingdom law — In the United Kingdom, a patent provides its proprietor with the right to exclude others from utilizing the invention claimed in that patent. Should a person utilize that invention, without the permission of the patent proprietor, they may… …   Wikipedia

  • Patent misuse — In United States patent law, patent misuse is an affirmative defense used in patent litigation when a defendant has been accused to have infringed a patent. It has also been used to mitigate damages following a finding of infringement. This… …   Wikipedia

  • Glossary of patent legal concepts — Patent law (patents for inventions) …   Wikipedia

  • Design patent — US design patent D48,160 for the original Coca Cola bottle. In the United States, a design patent is a patent granted on the ornamental design of a functional item. Design patents are a type of industrial design right. Ornamental designs of… …   Wikipedia

  • Software patent debate — is the argument dealing with the extent to which it should be possible to patent software and computer implemented inventions as a matter of public policy. Policy debate on software patents has been active for years. [Cite book |last=Nichols… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»